翻訳と辞書
Words near each other
・ Zuid Haffel
・ Zuid, Suriname
・ Zuid- en Noord-Schermer
・ Zuid-Afrikaans Hospital
・ Zuid-Beijerland
・ Zucker, Abrahams and Zucker
・ Zuckerbaby
・ Zuckerberg
・ Zuckerhütl
・ Zuckerkandl
・ Zuckerkandl (film)
・ Zuckerkandl!
・ Zuckerkandl's fascia
・ Zuckerkandl's tubercle
・ Zuckerman Bound
Zuckerman functor
・ Zuckerman helmet
・ Zuckerman Unbound
・ Zuckermandel
・ Zuckermann
・ Zuckert
・ Zuckertia
・ Zuckerzeit
・ Zuckschwerdt
・ Zucksville, Pennsylvania
・ Zuclo
・ Zuclopenthixol
・ Zuco 103
・ Zud
・ Zud Schammel


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Zuckerman functor : ウィキペディア英語版
Zuckerman functor

In mathematics, a Zuckerman functor is used to construct representations of real reductive Lie groups from representations of Levi subgroups. They were introduced by Gregg Zuckerman (1978). The Bernstein functor is closely related.
==Notation and terminology==

*''G'' is a connected reductive real affine algebraic group (for simplicity; the theory works for more general groups), and ''g'' is the Lie algebra of ''G''. ''K'' is a maximal compact subgroup of ''G''.
*''L'' is a Levi subgroup of ''G'', the centralizer of a compact connected abelian subgroup, and
*''l'' is the Lie algebra of ''L''.
*A representation of ''K'' is called K-finite if every vector is contained in a finite-dimensional representation of ''K''. Denote by ''W''''K'' the subspace of ''K''-finite vectors of a representation ''W'' of ''K''.
*A (g,K)-module is a vector space with compatible actions of ''g'' and ''K'', on which the action of ''K'' is ''K''-finite.
*R(''g'',''K'') is the Hecke algebra of ''G'' of all distributions on ''G'' with support in ''K'' that are left and right ''K'' finite. This is a ring which does not have an identity but has an approximate identity, and the approximately unital R(''g'',''K'')- modules are the same as (''g'',''K'') modules.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Zuckerman functor」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.